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1 Introduction

The Holstein model [1] describes non interacting electrmms lattice cou-
pled to dispersionless phonons. For one electron in thesysthe bare
electron is dressed by a cloud of bosonic excitations andlliscca polaron.
The properties of this new patrticle are still puzzling, altgh this problem
is very old and has been solved numerically for finite or infirdize sys-
tems [2]. Most of these works are devoted to study the Grdanttion of
the bare electron(Z(k,w), which can be measured by photoemission ex-
periments, and not to understand the fundamental natuteegbalaron as
a dressed particle [3, 4]. The difficulty arise from the fdwttonly in the
atomic limit of the problem, a small polaron operator can tzhamatically
constructed, and its Green’s functi6i{w) defined.

Within the Local Impurity Self-Consistent Approximatios][ which be-
comes exact in the limit of infinite dimensions, the anabjtiexpression of
the local Green'’s function for the electron [6] has strongikiliarities with
its counterpart in the atomic limit, so it is worth to reviemist local approxi-
mation in the spirit of the small polaron physics, and tondaw to compute
the Green’s functiort?(k, z) of the small polaron.

For one electron in the system, the Hamiltonian reads

H = soz:c;[cj — tOZc}Mcj + wOZb;bj Q)
J J,6 J

—gowo Z C}Cj(b; + b)),
J

wherec} andc; creates and annihilates an electron at Htg b;f. and b;
creates and annihilates a bosonic excitation atiiteThe sum ovey runs
over theM sites of the lattice, the sum ovéruns over nearest neighbors,
wy is the optical frequency of the phononsg,is the atomic energyy is the
hopping energy, ang, is a dimensionless coupling constant. We define the
basis states of the phonons|a$, with b;bj]n> = nj|n). For one electron

in the system, the basis states a}{sm. At zero temperature, the polaron
problem is to compute the Green’s function for the electron

1
Gy (=) = (mle; ———clln) (2)




This Green'’s function contains all the physics of the probl©n the ground
state of the phonons, that@?’;’(z), we have just access to the excitations
of the bare electror?(k, w). In this paper, we focus on the Green’s function
of the small polaron,

GY0(2) = (0|U] ¢;

irj ciu;|o) (3)

1
z—H

whereU; is a local operator defined from the atomic limit of the proble

2 Basicideasof DMFT

The Dynamical Mean Field Theory, or DMFT, deals with conethelec-
trons on a lattice and reduces the problem to a single siteedddu self-
consistently in an effective medium [5], so the the first ideto focus on a
single sitep,
H=H — 3 ¢ sco + H® (4)
5

with
H® = Eoclco + woblbo - gowo(bl + bo)CiCo ()

and to define an effective Hamiltonian for this single site
H, = H? + HY. (6)

The termHI(;}) describes the effective medium.
Consider the one particle Green’s function for the electibthis siteo
on the vacuum of the phonons
0(t
Goolt) = "W 0jc,1)cfj0). @)
We obtain the equation of evolution

ih01Goo(t) = 6(t) + £0Go,o(t) —t0 Y Gotsolt) + Foolt)  (8)
d

with
Foolt) = M (01c,, 5O — zocie (01} 10). ©



Going to complex valued frequencies, we get

2Goo(2) = 14 €0Go0(2) —to Y Gorsol2) + Fool2). (10)
)

We see that we can obtain a closed solution for the local G&emction if
we can define a local Weiss's self-energy

_tOZGo—i-é,o(z) = Wo,o(z)Go,o(z) (11)
1

and a local interaction self-energy
Foo(z) = X6,0(2)Go,0(2). (12)

Then the solution is

1

e ro —Wou(5) = Sen(a) (13)

Goolz) =

Now, without approximation, for a periodic lattice, we kndhat the equa-
tion of evolution has the form

2G(k,z) = 1+ e0G(k, 2) + &Gk, 2) + B(k, 2)G(k, 2).  (14)

We have introduced the Fourier transforms

¢ = \/LM ; ¥R g, (15)
Gii(z) = % T ekRR) Gk ), (16)
K

—to Y Girsi(z) = > &Gk, 2). (7)

5 K

If we chooseX(k, z) = ¥(z), we obtain
7 Y66k 2) = WEGE) (19)
k

with
1

z—e0— &k — X(2)

Gk, z) = (19)

3



and
1

1
Glz) = M;G(k’z) - z—eg—W(z)—2(2)

We thus see that we can set up a local approximation for aicdatiamil-
tonian if we put by hand that the self-energy is local, andagéfeiss’s self-
energy that depends only of the lattice and of this localsedrgy.
Let us consider a two-site problem. In this case we hgve- +tj, SO
the local Green'’s function is given by
1 1 1

G(z)=§ z—Eo—to—Z(Z)+Z—€0+t0_2(2) 7 @D

(20)

and we obtain the expression of the Weiss's self-energy

t

Wiz) = z—¢g9—X(2)

(22)

At this stage, we introduce the Renormalized PerturbativpaBsion,
or RPE [7]. Within the DMFT, the equation of evolution of thee@n’s
function, for a periodic lattice, is

ZGZ‘J'(Z) = 51',]’ + EQGZ‘,]'(Z) —to Z GH_(M(Z) + E(Z)G@j (Z) (23)
é

We can thus define a free propagator
9ij

GHe) =

; (24)

and set a Dyson'’s equation with the hopping term as the n@odé part of
the Hamiltonian. Figure 1(a) corresponds to the contrifputi

Gij = G 1GY) ; taGY) (25)

and Figure 1(b) corresponds to the contribution

Gii = G toGY) 110Gy g toGY 510Gl (26)

nl,nl

The RPE states that one uses renormalized Green’s funetsons sum over
all paths. The above contribution fof; ; becomes

Gij = GiitoGninf oGy in) (27)

4
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Figure 1: Path (a) is a contribution &; ; and path (b) ta~; ;.

whereG,; 1[5 is the renormalized Green's function for sité for a lattice
where the sité has been removed, alg ; ; 1 is the renormalized Green’s
function for sitej where sites andn1 have been removed from the lattice.
The contribution foiG; ; becomes

Gii = Gii toGp1mipi) t0Gn2,n2fin] 10Gn3n3[in1,n2] tOGZ(,Oi)- (28)

The last factorGfg) is the unrenormalized Green’s function since the first
factor G; ; takes account of the renormalization.

Let us consider a one dimensional infinite lattice. The d@qodbr G; ;
is

Gii= Gz(,oz) + tgGiJGi-i-l,i-i-l[i}Gz(',Oi) + t(Z)Gi,iGi—l,i—l[i}Gz(',Oi)' (29)

Within the RPE, the path — i +1 — ¢+ 2 — ¢+ 1 — ¢ is not allowed
since the sité + 1 has been removed of the lattice. Next, we get

0 0
Gittit1fi) = Gz('—i-)l,i—i-l + 1G4 1,414 Gi+2,i+2[i,i+1]Gz('+)1,z'+1- (30)

We notice thatG; 5 ;125 i11) = Giyo,iv21i+1]- We thus obtain the solution
for the local Green’s function as a continued fraction exsiam

1
i = 31
Gia(2) z—eo— X(z) — 2t39(2) (31)
with the self-consistent equation fér(z),
1
®(2) = (32)



For the two-site cluster, we obtain the equations
Gi1 = G + 13G1,1Ga o GY) (33)

andGs o) = Ggog The local Green’s function is thus

1

Gi1(2) = " (34)

_ _ _ %

@—e0—2(2) z—¢go— 2(2)

For the Bethe lattice witl¥ neighbors, we obtain
Gii = Gz(,oz) + Z t(Z)Gi,iGH&Hé[z’] GE,OZ-) (35)
5
and

Gi+5,z’+5[z’] = Gz('?i-)&i+5 (36)

2 (0)
Y 106G it6.i060 Gt o8 it 646 [i,i+6] Giisivs
6/

For the site there isZ indentical contributions, while for site+ ¢ there is
only Z — 1 contributions since the path backitgs forbiden. We obtain the
solution for the local Green’s function

1

Gislz) = z—eo— X(2) — Z139(2) 37)
with the recursive expansion
1
O(z) = (38)

z—eo—X(2) — (Z - 1)83®(2)
Now, if we take the limitZ — oo with the scalingty — to/+v/Z, we obtain
W(z) = t3G(2).

Consider now a non periodic lattice. In this case the equaitf evolu-
tion, within the DMFT, are

2Gij(2) = 6ij +€0Gij(2) + Ti(2)Gij(2) —to Y Gitsj(z)  (39)
1

6



and we define the free propagators of the RPE as

1

(40)

For a three-site problem, with open boundary conditions getethe equa-
tions of evolution

ZGl,l(Z) =1 + (60 + El(z))GLl(z) — t(]GLQ(Z)
ZG2,1(Z) = (60 + EQ(Z))GQJ(Z) — t(]Gl’l(Z) — tOGg’l(Z) (41)

ZGg,l(Z) = (60 + Eg(Z))GgJ(Z) — tOGQ’l(Z)

In the language of the RPE, we write

Gia(z) = GY(2) +8G11(2)Goam ()G (2)

02,2[1} (2) = Gg?%(z) + 75(2)G2,2[1](«Z)G?,,su,z} (Z)Gg,]%(z) (42)
_ 0)

G3,3[1,2](Z) = G3,3(Z)

and obtain the solution as

1
Gru(e) = z— g9 — X1(2) — Wi(z) (43)
with
tg
_ _ _ 0
20— () z—¢eg — 23(2)
For G2 2(z), we obtain
1
G2,2('z) — Z—eo— 22(2) — WQ(Z) (45)
with 2 2
Wo(z) = . + 0 (46)



In this case¥; (z) = ¥3(z) andWi(z) = W3(z). We notice that?; 2(z) =
~t0G1,1(2)Gapp)(2) and Gi3(2) = 1§G11(2)Gaop)(2)Ga01.2)(2), i€
that all the non-diagonal Green’s functions can be expdesserms of local
Green’s functions (that may differ by their Weiss'’s seleggies). We notice,
also, that the Weiss's self-energy of a given site involvaly the interacting
self-energies of the other sites.

3 Atomic Solution

For a single site, the Hamiltonian reads
Hy: = eoc e + wobd — gowoele(bT + b). 47

The basis states of the phonons atg with b'b|n) = n|n). The Hamil-
tonian commutes with the number of electrdia, so one can diagonalize
it in each subspace. Faefc = 0, one gets an harmonic oscillator with
Hyi|n) = nwoln). Forcle = 1, one gets a displaced harmonic oscillator
with Hyln) = (g0 — g3wo + nwo)|n). The eigenstates ate) = Uln)
whereU is the unitary operator

U = e900' =) — =398 900" ,—g0b (48)

with the propertied/TbU = b + gy andUTbTU = bt + ¢¢ [8]. The Green’s
function of the electron is given by

1

G (2) = (m]c

at

c|n). (49)

at
Since we compute it for one electron, we get

1

Gat"(2) = (m|— g0 — woblb + gowo (b1 + b)

at

[n). (50)

Next, we define the atomic polaron, or small polaron, creatiperator as
& = Ucl. When acting on the stafe) it creates an electron and a coherent
state|n) = U|n). The Green’s function of the small polaron is given by

G (2) = (m|UTe

at

)
AU|n) = o . (51)
z— Hg z —€p + ggwo — Mo




Instead of writing matrix elements, one can directly write bperator form
of these local Green'’s functions:

1
G, = 52
t(z) zZ—E&0— wobTb + goon ( )

and )
Gu(z) = (53)

zZ — 50 - wobTb
with £y = o — gdwo and X = bt + b. We notice the relatiolG ;(z) =
UtGa(2)U.

Finally, we introduce the unitary transformation that diaglize H,;,
such thate® = 1 for ¢f¢c = 0 ande® = U for ¢fe = 1. This is just
S = gocle(b! — b). One obtains the transformed Hamiltonian as

]SIat —e “He® = EocTc + wObTb. (54)

It describes a free fermionic small polaron and free boserditations.

4 Standard DMFT solution

In the Local Impurity Self-Consistent Approximation [Shedefines a local
HamiltonianH,,. for an given sitey, which contains the atomic Hamiltonian
H,, and a Weiss’s HamiltoniaBlyy, given by

Hy = Z skc;{tck + Z v, [CLC + cTck]. (55)
k k

Here,cy, anch are auxiliary fermionic annihilation and creation operato
They mimic the contribution of the other sites of the latti¥de parameters
e andvy are chosen to fit the Weiss’s self-energy of this given 3ité;).
Since there is only one electron in our problem, we have thelition ¢'c +
Sk cher = 1. The basis states of the problem afg:) andc}|n), so we can
define Green'’s functions for these auxiliary fermions as

m,n 1
Gk,k (Z) = <m|CkZ_7H,lOCCL|n> (56)
The problem is to compute the local Green’s function for tleeteon
m,n 1
Gloc (Z) = <m|CZ_7H,lOCCT|TL> (57)



Let us first compute the local Green’s function fgr = 0. We define
diagonal Green'’s functions far, = 0 and then use the Dyson’s equation.
The diagonal Green’s functions are

1
0 _
Gool2) = —— p—rT (58)
and )
),y —
Cralz) = z — e — woblb (59)
The Dyson’s equations are
Gool2) = Goia(2) + X4 kG (2) G 2)
(60)
Gk,O( )= va(O)( )GO,O(Z)
with the solution
0(2) = — ! 61
Groc(2) = Gool2) z —eg — wobTb — W (z — wpb'b) (61)
and )
v
W(z)=> —F—. (62)

% Z — €L

_ Forgo # 0, we consider the local Hamiltonian for the small polaron
Hjoe = e~° Hyoee®. The diagonal part is given by

Y = zpcte+woblv + 3 epclen (63)
k

so we define the free Green'’s functions

~ 1
0 -
GO,O( ) - y— é:o _ wObTb (64)
and .
0,y —
Gkvk(z) 2 — e —woblb’ (65)
The interaction part is given by
Hl(olc ka [Uc,, tet+ Ut clep). (66)

10



One obtains the Dyson’s equations

Goolz) = GW(2) + X kG (2)UT Gy o (2)

(67)
Grol2) = G (2)UGoo(2)
and the solution
N ~ 1
Gloc(z) = Go o(z) = (68)

’ Z — 50 — wobTb — W(z)
with W (z) = UTW (z — wob'b)U. Finally, we useGio.(2) = UTGioe(2)U
and get the solution of the problem

1
z —eg — wobtb + gwo X — W (z — woblb)

Gloc(z) = (69)

We notice thaG,.(z) = Gut(z — W (z — wob'b)). Once again, we use the
Dyson’s equation to computg|.’(z) with

)y _ 1
Giloe(2) = 2z —eg — wobtb — W(z — wob'h) (70)
and . .
Gloc(z) = Gl(o():(z) - gOWOGl(OZ(Z)XGloc(z)- (71)
We obtain the solution
1
Gioe(2) = 72
02 = ST TR - e (5 W) (72)
with
An(2;W(2)) = (73)
1
z—egg—nwy— W(z—nwo) — (n+ 1)gdwidAnt1(z; W(2))
Writing the solution as
0,0 1
G .(2) = (74)

z—wy— Wi(z) —X(2)

we identify the self-energy.

11



We have thus obtained the desired local interaction selfggr:; (=) of
a given site as a function only of its local Weiss'’s self-gyer.e. X;(z) =
gdwdA1(z;W;(2)). Now, since we can obtain the local Weiss's self-energy
as a function of the local interaction self-energies of ladl bther sites, we
have solved the problem.

5 General Framework
Consider the Green'’s function of the small polaron

G (2) = <myUTc, U |n) (75)

— H ]

with U; = ACE . Writing the HamiltonianH = H® + v, whereV is
the hopplng part, one obtains

(fU} e — el V) = — (mfzf;g)(]j|m>. (76)
We thus define the free local Green’s function as
9= ————— )
Z— €0 — w0 bjbj
and get the Dyson’s equation
Gii(2) = G (2) — to ZG Ui UisGirsi(z).  (78)

Now, we use the relatio@; ;(2) = U;'Gm(z)Uj to obtain the Dyson’s equa-
tion for the Green'’s function of the electron

Giilz) = G (= tZG Giysi(2) (79)

with )
G (2) = — (80)
z — &g + gowoX; — wo Zj bjbj

This is the Dyson’s equation for a free electron on the lattic

12



For a two-site problem, the local Green'’s functions aremivg

1
Gra(z) = (81)
2 — g0 — wo(blby + bhba) + gowo X1 — 13GS(2)
and .
Gia(z) = (82)
z—¢€o— wo(bilh + b£b2) - t%U{rGg?%(z)Ul
with )
GY)(2) = (83)

zZ—€g— wo(bilh + b;bQ) + goong.
We now consider a finite chain of lengiti. The interaction part reads

M-1

V = —t Z (C}Cj+1 + c}ch). (84)
j=1

Consider the problem to compute the Green'’s function fofithesite of the
chain, that is&; 1 (z), and call it, for a while, the local Green’s function of
the problem.

In the language of the RPE one gets

1

G171(Z) =
Kfol)(z) - t3G2,2[1}(Z)

(85)

with Ki(g)(z) = [G(O)(z)]‘1 and Gy o[1)(2) the Green's function with inter-

action between site and site2 removed. Next, we obtain

1

Goopj(2) = (86)
K3 (2) — 3G a0.2)(2)
and so on, until the end of the chain,
Gump,.. . m—1)(2) = Gg\(/)[),M(z)' (87)

We notice thatG, o) (2) is diagonal in the basis of sitg that G5 311 9)(2)
is diagonal in the basis of siteand2, and so on. This means that one can
compute(z, 51 (2) in the basis of all the sites but sitelf we write G[Ql}zm (2)

13



this Green’s function, then one gefs o)(z) = G ]2[1]( — woblby). The
same way, one getSs 31 9)(2) = Gg 2[1 2}( (,U(]b2b2) or G s 9)(2) =
Gglg?l o (2 — wob}by — wobbbs). We also notice thaG[;gm( ) is the local
Green’s function for the chain with siteremoved, thatz!':>! (2) is the

3,3[1,2]
local Green'’s function with sites and2 removed, and so on. The Dyson’s

equatlons become

Gii(s) = GU(2) +8G11(2)Ghyy (2 — wobb) G (2)
G[21]2[1]( ) = G[21,]2(0)(2) +t(2)G[217]2[1]( )Gg132[11 2]( u)05252)(;[ KO)( )

(88)

Finally, we consider a Bethe lattice with coordination nemi. The
Dyson’s equation for the central sitds

GO,O( ) Goo + 750 Z Go o G5 5[0] )G(O) (z) (89)

)

The sumd runs over itsZ nearest neighbors. Agaitss 5, (z) is a diagonal

operator in the basis of siteand we writeGs 50 (2) = G(@O}S[O](z — wob'b).
Next, for one of the neighbors, the Dyson’s equation reads

Gs600)(2) = Gfﬁ%(z) +15 > Gs510)(2) o o1 [0,5](2)(;((;,0(3(2)- (90)
6/

The sumd’ runs overs itsZ — 1 nearest neigbhors (not the sitg Again
Gt 5+6']0,6)(#) is @ diagonal operator in the basis of sitesndo.

Notice that for a Bethe lattice in infinite dimensions, we cee the
cavity method [5] and obtain directly the solution of the DMfer G,.(z).
Consider a central site on the lattice, withZ neighbors. Starting from the
Dyson’s equation (89), we develops in powert&f

Goolz) = Ggog(z)
5> G (z)GcS&[o]( )Go?())g

+ 2)
+ t s Gg?g( )Ga,é[o}(z)G( )
+ ...

(91)
(2)Gy 510 (2)GSD(2)

14



and then take the expectation value on the vacuum of all tee, diut the
central site. We introduce the unknown local Green’s fumo€;,.(z), since
for Z — oo, the expectation value @, ,(z) andG; 51, (2) should corre-

spond toG). (). At ordert} one obtains the contribution to the Weiss’s
self-energy
Z12GY0 (2 — wob'b) (92)
0™ loc 0 :

At ordert$ one obtains two contributions. The first is just
Z2(Z = 1[G (2 — wob b))%, (93)
while the other contribution is

Zt§ " G(z — wob b)Gar (2 — quo)Glo(z — woblb).  (94)
q

For Z — oo and the rescalingy — to/v/Z only a single term survives at

each step in the development in powerdand we get the Weiss’s self en-

ergy 12G1.2(z — wob'd). Since,G, () should also correspond @,.(z),

we obtainG;,L(2) = G,/ (z) — W (z — wob'b) and the self-consistent equa-

tion W(z) = 2G)°(2).

loc

6 Revisited DMFT solution

Consider the two-site problem with the following effectidamiltonian for
sitel
H; = EQCJ{C1 + wobibl — gou)ochJ{Cl + Hy (95)

with

Hyy = z—:ocgcQ — tO(CICQ + he) + Z akoz;iozk + Z bk(cgak + he). (96)
k k

The parameters;, andb;, are choosen such that

2
Sa(z) = O (97)

— 2= ap’
. . 0
We use the equations of evolution to compﬁl%l(z). We get

ihoyGYY(t) = 6(t) + 20GYY (£) — oG (1) — gowo Gyl (1) (98)

15



and
G (1) = (20 + nwo) G (1) — toGy Y (¢) (99)

—gowO\/ﬁGﬁ (1) = gowovn + 1 G"HO( t).

Now, we use the fact that

—toG1Y(2)

- 1,1

’ _ ; 100
G2,1 (2) z—egp — nwy — 2a(z — nwp) (100)

2GY1(2) = 1+ (e0 + 21(2))GTY(2) — 00GhY(=) (101
or .
G(l):?(z) e wo — X1(2) — Wa(z) (102)
with ¥ (2) = gdwdA1(z; Wi (2)) and
Wi =0 (103)
z—¢go — Ya(2)
If we use the equations of evolution to compuig3(=), we obtain
G3(z) = : (104)

t2

P .ty
#=g0 = 22(2) z—eg — 21(%)

We thus obtain the desired self-consistent result, givethéywtandard solu-
tion.
For a given site, the effective Hamiltonian is

H, = z—:oclco + woblbo — goonoclco + Hy (105)
with
HW—s()Zc Cz_tOZCH.(;Cz (106)
i#o0
+ 3 Jag e s + bii(cl o + he)l
i#o k

16



The parameters;, ; andby, ; correspond to

by
D E)) ; p— (107)
The HamiltonianHyy, is quadratic, and correspond exactly to the Weiss'’s
Hamiltonian of the standard theory.
Our mean field Hamiltoniai/, emphasises the fact that no excitation of
phonon are allowed for the other sites of the lattice, whealinlg with the
excitations of a given site.

7 Restricted basis

Consider a restricted basis for the phonons, where exdidelssare allowed
only for a single site at a time. For the two-site problem,libsis states are
|n1,0) and|0,ng). For a three-site problem, the basis states|are0, 0),
|0,7n2,0), and|0,0,n3). For a lattice withM sites, the dimension of the
phonon basis isM P + 1), if we allow P excitations for a given site.

If we compute the local Green's fonction for the sitewith the equa-
tions of evolution, we obtain the simple result, which cepends to a local
approximation,

2GYP(2) = 1+ (20 + 21 (2)) GO0 (2) — to Z G%5%.(=)  (108)

or
1
G (z) = (109)
’ z—¢eg— EIEO)(z) - 117(1)(2)

2

with
20(2) = g2 (W, (2)) (110)

and VVZ-(O)(z) is the free Weiss'’s self-energy, that is correspondinghan t

RPE, to

G = — (112)
’ — €0

while Wi(l)(z) is the Weiss’s self-energy corresponding, in the RPE, to
1
z—eo—30()

1,1

(112)
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As an exemple, consider a one dimensional periodic latfdest, we com-
puteW(0>(z) via

1

— = . 113
Z z—¢gp+ 2t0 cos(k)  z—¢gg—WO(z) (113)
Then, we obtairE(©) (2) = g2wiA1(z; W) (2)), and then, we get
1y 1 B 1
M 4= z — g + 2tg cos(k) — £O)(z) 20— XO0(2) —W(2)
(114)

It is interesting to notice that the expression for this ldg@eeen’s function,
Eq (109), corresponds to some Momentum Average Approximdg] and
to the first iteration of the DMFT solution [10].

The nice thing with this restricted basis, is that we canlgasimpute
numerically exactly all the Green’s functia@’;" (=) or ég}’n(z) for small
systems. If we perform exact diagonalizations withexcitations, then we
can compare with the analytical results by computiigz) also with P
excitations, i.e. by limiting the continued fraction 49> (z; W;(z)). Since
excitations of phonon are allowed only for a given site atrgetiwe expect
the same structure for these Green’s functions and thobe ®@MFT, so we
can check the decoupling scheme of the Green’s functionering of the
local Green'’s functions.

First we can check that the local Green'’s functions of thélem

lo,...,n,...,0) (115)

0

1
G"™2)=1(0,...m,...,0|¢;
(2) = {0 om,. . Olei =

correspond to
1

Bl = 116
whereW, ;(z) is the diagonal operator given by
0.0, _ (1)
Wlnln(Z) = Wi(o)(z) (117)
i (2) =W; 7 (z —nwy) forn >0

We guess the form oW, ;(z) from the fact that, when computing}’; (=),
we getiV;(z) = W{7 (z), while X;(z) involves onlyW?;"(z) for n > 0.
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Let us consider the open chain of lenght = 3. For sitel and3 we
have

2
w0 () = 1 - (118)
Z—¢&0~— z—_og_o
and for site2 we have
WiV (z) = 2 (119)
2 zZ—&Q ’
From these free Weiss'’s self-energies, we compute
20 (2) = g (= W1” (2)) (120)
and
257 (2) = gt (25 W3 (2)). (121)
Then we get
2
Wi () = % - (122)
_ _ E(O) _ tO
z—¢go— X7 (2)
and )
Wil (z) = 24 (123)

- €0 — Ego)(z).

Then we computé&}'}(z) andG373 (=) with our local approximation

1
GY(2) = (124)
’ z—co— 2 () - WV (2)
and )
G95(2) = (125)

z—eo— 3P (2) - WiV (2)

We obtain a perfect agreement with the exact result.
Next we compute?5 (z). We start from the exact expression

G12(2) = —t0G1,1(2)Ga 211 (2) (126)
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and make the decoupling
G5 (2) = —toGY1 (2) Gy (2)- (127)
We guess that the local Green’s functiGi 5(;)(2) is given by

1

G z) = 128
2’2[1]( ) Z— &0 — WObTb + goon - WQ’Q[H(Z) ( )
with the diagonal operator
0,0 (D
Waap(#) = WZE”(Z) (129)
W;:;[H(Z) = W2( )(z —nwy) forn >0
and the Weiss’s function
2
1) to
2] zZ—€0— Z:())O)(z)
We thus obtain
1
GYo(2) = : (131)
I N C (O
We obtain a perfect agreement with the exact result.
Next we computes?’s (). We start from the exact expression
G13(2) = —toG1,2(2)G3 301,9)(2) (132)
and make the decoupling
G5 (2) = +15GY1(2) Gy (2) Gy gy 9 (2)- (133)
We Guess thaG 511 2(2) is given by
1
G z) = 134
33012 (2) z — g0 — woblb + gowo X — Wi 31 91(2) (134)
with the diagonal operator
0,0 _
Waan(2) =0 0) . (135)
Wg:??[lﬂ](z) = W3’ (2 — nwp) forn > 0
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We get
1

G (z) = . (136)
33[1,2] ey — z:gO)(z)
We obtain a perfect agreement with the exact result.
ForGg;—O(z), we compute
Z Z UG (2)U™" (137)
and
Z Z U™Gyy" (2)U™°. (138)

We obtain a perfect agreement Wlth the exact results.
For G?’Q(z), we compute

= —tg Z Z UG (2) Gy (2) U™ (139)
and
= tOZZUmOG Gggm< )GY S (U™ (140)

We obtain a perfect agreement with the exact results.

8 Decoupling scheme

We apply the decoupling scheme obtained within the restfibasis to com-
pute G () and G} (2), within the DMFT, that is, instead to deal with

Wz.(o)(z) and Wi(l)(z), we use the self-consistent solutid¥;(z) given by
the DMFT.
Consider a lattice with\/ sites and solve the DMFT equations to get
¥;(z) andW;(z). Then construct all the local Green'’s functions
1

GO _ 141
ey e s B

with the diagonal operator

Wi () =0
W (2) = W;(z — nwp) forn >0

0

(142)
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Then use the RPE to express any Green’s function in term sktlecal
Green’s functions and take the expectation value indilidua

For the electron, the RPE is just the equation of free particl the lat-
tice, so we just need

1

(0) (0)1,110,0
Gil() =GN = 5 (143)
For an infinite system;(z) = ¥(z), and for a periodic lattice, we obtain
Gk, 2) = . (144)

z—e0— & —2(2)
For the small polaron, the RPE involve the operatdssso we need to com-
pute[UTG{) ()]0 = [G(T (2)U]°0 or [UTG(Y) (z)U1°°.

Let us compute (k, z) andG(k, z) for a one-dimensional lattice with
M sites. In this case, we havg(z) = X(z) andW;(z) = W (z). We start
with

Wn,...m-1)(2) =0 (145)

then compute

t
Wi[l""’i_u(z) C2—e0— ¥(z) — Wi+1[1,...,i](z) (146)

until Wy (2), and then

2
2t2

z—eo—X(2) — W2[1}(Z). (47

Wi(z) =W(z) =

We solve the self-consistent equations ) = gdwiA1(z; W(z)) and
W (z). Notice that this way to compuf’(z), instead of Eq (114), gives a
slightly different result that vanishes faf large enough.

In order to computé&r(k, z), we just have to consider

1
G% () = ) 148
ballni-1)(2) z—eo—2(2) = Wip,. i—1(2) (148)

We start to compute the local Green’s funct'@ﬂf(z) that isG?:(f(z), and
then compute

0,0 0,0/ _\ 40,0
Gl (2) = =Gy (2)G

Sl L. (%) (149)
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until G, (2). Then we use the Fourier transform. From a numerical point
of view, it is safer to choos@/ odd and to compute

(M+1)/2
Gk, z) = GS”S(z) + Z 2cos(2mkn /M) va’g(z) (150)
n=1

In this case, we can compare the numerical result with thedata result of
the DMFT, i.e. Eq (144).
Next, for G(k, z), we have to compute the full local operators

1

G, .. i— = 151
altei=1] (2) z — g0 — woblb + gowo X — W, ;n;-1)(2) a0
with 00
Wz’,%u,...,i—l}(z) = Wi[l,...,i—l](z)
(152)
Z%?l,...,i—l}(z) =W (z —nwg) forn >0
Then we compute
GY1(z) = Y U™U™GTY(2), (153)
~0,0 . m, 07,0 ~m,0 0,n
Gl,z (2) = —to Z umru™ Gr171 (Z)G272[1](Z)> (154)
GY3(2) = 15 > U™OU™ G (2)Gyyy (2) Gy o (2),  (155)
@‘1):2(;;) = —t3 Z UmpUn’OGTiO(Z)GngD](z)Gg:g[l,z}(Z)GZ:T[LZ?)}(Z)’
y (156)
and so on, untiY"}, (z). Then we get
) ) (M+1)/2 )
Gk, z) = Gg’g(z) + Z 2 cos(2mkn /M) Gg’g(z). (157)
n=1

In this case, we can check that the sum oketorresponds to the local
Green'’s function

() = -3 Gl ). (158)
k
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Figure 2: Spectral functions for the electron

In Fig 2 and Fig 3 we show the result for the spectral functifrithe electron
Ak,w) = =2ImG(k,z = w +1in) (159)
and for the spectral functions of the small polaron
A(k,w) = =2 ImG(k, 2z = w + in) (160)

The parameters atg = wyp = gg = 1,60 = 0, M = 51, andn = 0.1,

For these values of the parameters, we obtain #h@ = 0,w) and
fl(k: = 0,w) have exactly the same main pic, but we obtain a rather differe
physics for the electron and the small polaron. The smakupal of the
atomic limit remains a good quasiparticle.

9 Dressing an electron

We would like to emphasis that they are many ways to define d poiaron
operator, i.e. to dress localy an electron with phonons [4].
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Figure 3: Spectral functions for the small polaron



Consider the two-site problem and compute the Green'sifumefor the
electron

m.,n 1
G (2) = <m,0lclﬁc1|n,o> (161)

and .
G5 (2) = (m, Oles ———¢3[0,m). (162)

If we use the operatot/ to compute the Green’s functions for the small
polaronG1%4™ (z) andGY%™(2), with

G (z) = Y UmOGT () U0 (163)
we obtain, for the first poles, that correspond to the funddaalenergy and
the first excited state,

EP ZP
—1.68848  0.43015 (164)
—1.14106 +0.37575

SoG(k = 0, z) has a main pic witt ~ 0.86 while G(k = =, z) has a main
pic with Z ~ 0.75.

Next, following Ref [4], we can also define a small polaronngsthe
reduced density matrix for a single site. We have, for therstates,

Z W ma ( |m17 ma) (165)

Jym1,m2

so, targetting only on one of the eigenstates, we obtaingtieced density
matrix

Z\Ill mm2 \Ijl nm2(p) (166)

Then, we diagonalize(p) and getU(p). The first eigenstate wittl, ~
—1.688 corresponds to the symmetky= 0 and the next withf; ~ —1.141,
corresponds to the symmetky= 7. ForU (0), we get the result

Ly Zp

—1.68848  0.46065 (167)
~1.14106 +0.28247
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SoG(k = 0, z) has a main pic witt€ ~ 0.92 while G (k = =, z) has a main
pic with Z ~ 0.57. ForU(m), we get the result

EP Zp
—1.68848  0.35216 (168)
—1.14106 40.41841

So, this timeG(k = 0, z) has a main pic with2 ~ 0.70 while G(k = =, 2)
has a main pic withZ£ ~ 0.84.

The formalism to compute the non local Green’s functionshefamall
polaron within the Dynamical Mean Field Theory, presentethe last sec-
tion, can be used with any local transformation.

10 Conclusion

In this paper we revisited the Dynamical Mean Field TheorthefHolstein
Polaron Problem in order to compute the all dynamical cati@h functions
for the electron and the small polaron. We introduced aiotstt basis for
the phonons in order to check numerically the right decoigpicheme of
the Green'’s functions within a local approximation.
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Numerical Stuff

Local self-energy

We make the prograrher ci u. cc to compute the local self-energy for a
system with)M sites. First, we compute the free local Green’s function

Go(2) =77 ) ————+ (169)

with 0
T
=92 —k 170
3 0 cos( i ) (170)
and then extract the free Weiss'’s function using the formula

1

Go(2) = p— A (171)
Then we compute the self-energy
o(2) = gawiAa(2) (172)
with
An(z) = ! (173)

z —eg — nwy — Wo(z — nwp) — (n+ 1)gdwi A1 (2)
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